

OCT ANGIOGRAPHY: IMAGING MOTION Rick Trevino, OD, FAAO Rosenberg School of Optometry

ONLINE NOTES

richardtrevino.net

CONTACT

rctrevin@uiwtx.edu

DISCLOSURES

• No conflicts of interest to disclose.

RESOURCES

In our induction free during Contract, annumenters en algonaris assessiones au presental y so dans programaticas and the generated as your fine do a classicar inducer inducer in presentation for dans and program finance inducer in two menos any formaticity 400. The Classic Common Field Classicar Field Field and any first First and and inducer 10.2 generative field and an experiment field Classicar and the first First Andre menos and program first and the classicar and and the classicar and

OVERVIEW

- Retinal blood supply
- Technology (Motion contrast)
- Displays & Interpretation
- OCTA in disease
 - Diabetic retinopathy
 - Venous occlusion
 - CNV (AMD, others)
 - Glaucoma

RETINAL BLOOD SUPPLY

CENTRAL RETINAL ARTERY

Superficial capillary plexus: Ganglion cells Deep capillary plexus: Bipolar cells (INL)

CHOROID

Choriocapillaris – Sattler's – Haller's –

INTRODUCTION

- Non-invasive "flow" imaging
- 3D volumetric data
- Simultaneous retinal and choroidal imaging
- Structure/vasculature in tandem

Structure - Superficial

INTRODUCTION

- Rapid acquisition
- Short term repeatability
- High microvascular resolution

INTRODUCTION

• Precise delineation/measurement of neo

TECHNOLOGY

FDA Cleared

- Zeiss AngioPlex[™]
 - Cirrus & Plex Elite 9000
 - Optical micro-angiography

• Optovue AngioVue™

- RTVue XR Avanti Angiovue
- Split-spectrum amplitude decorrelation angiography

Heidelberg Spectralis OCTA Module

 Full spectrum amplitude decorrelation angiography

Topcon DRI-OCT Triton SS-OCT

• OCT angiography ratio analysis

Statistically significant differences exist across devices when measuring the same parameter

PMID: 32975683

CARACTER STATE

PMID: 33101783

MOTION CONTRAST

MOTION CONTRAST

MOTION CONTRAST

DISPLAY- En Face

DISPLAY- En Face

Segmentation lines tell you what retinal layers are being displayed en-face

Choroid

DISPLAY- Color En Face

DISPLAY- B Scan Overlay

	Angiography Analys	is : Angiography 6x6 mm	n	OD ()	OS OS
Technician:	Operator, Cirrus	Signal Strength:	8/10		8
Gender:	Male	Serial Number:	4000-6813		
DOB:		Exam Time:	11:22 AM		
ID:		Exam Date:	11/10/2017		and the second second
Name:				os	ZEISS

Angiography Analysis : Angiography 6x6 mm

OCT Angiography Overview SPECTRALIS® Tracking Laser Tomography

HEIDELBERG ENGINEERING OD

Patient: DOB: Sex: М Patient ID: Exam.: Jul/30/2021 Diagnosis: ---Comment: -

Comments

Doctor's Signature

SW Ver: 11.1.0.32456 Copyright 2018 Carl Zeiss Meditec, Inc All Rights Reserved Page 1 of 1

Step 1: Image the right spot

Step 2: Look at the en face OCTA image

Step 5: Look at the en face intensity image Step 4: Look at the B-scan with flow overlay

PMID: 33292740

Step 3: Look at the segmentation lines

ARTIFACTS- Motion

ARTIFACTS- Projection

Spaide R, et al. Image Artifacts in OCTA. Retina. 35(11):2163-2180.

ARTIFACTS- Projection

ARTIFACTS- Projection

Without projection artifact removal

With projection artifact removal

QUANTITATIVE ANALYSIS

FAZ Area

• FAZ area at the level of the superficial capillary plexus

Vessel Density

 Proportion of image area occupied by blood vessels

Fractal Dimension

- A mathematical parameter that describes the degree of complexity of the vascular pattern
- 1 = low complexity; 2 = high complexity

Superficial Deep FD: 1.639 FD: 1.739 Contro FD: 1.545 FD: 1.612 **Diabetic**

OCTA Clinical Applications

- Early diabetic retinopathy detection
- Identify vascular abnormalities (IRMA)
- Identify non-perfusion
- Evaluation of FAZ
- Visualize the deep capillary plexus
- Differentiate IRMA from early NVE
- Localization of microaneurysms
- Follow response to treatment

Normal

Diabetic

	Control	Diabetics Without DR	Diabetic Retinopathy
Mean FAZ area in the superficial plexus (mm2)	0.25	0.37 (p<0.01*)	0.38 (p<0.01*)
Mean FAZ area in the deep plexus (mm2)	0.38	0.54 (p<0.01*)	0.56 (p<0.01*)

*compared to controls (no sig diff between diabetic grps)

Takase N, et al. Enlargement of FAZ in Diabetic eyes evaluated by En Face OCTA. Retina 2015. 35(11):2377-2383.

Mild NPDR with reduction in BCVA

Intraretinal microvascular abnormalities (IRMA)

DIABETIC RETINOPATHY IRMA or early NVE???

VRI

VRI

Superficial

VENOUS OCCLUSION

OCTA Clinical Applications

- Quantify non-perfusion
 - Ischemic vs non-ischemic?
 - BRVO: Risk of post segment neo
 - CRVO: Risk of ant segment neo and NVG
- Visualization of macular ischemia
- Earlier detection of posterior segment neo

BRVO - Ischemic

BRVO – Nonischemic

BRVO – Nonischemic

Retinal Vein Occlusion

CASE REPORT

52yo HM

- Referred to our retinal service for evaluation of RVO OS
- Pt c/o blur OS x 5 days getting worse
- BCVA: 20/25 OD, 20/200 OS
- Ta 19/14
- SLE: WNL OU, No NVI

S/P IVB x 1

S/P IVB x 3 (5 mos after presentation)

BCVA 20/40

AngioPlex - Retina

Macula Thickness : Macular Cube 512x128

OD O OS

ILM - RPE

AngioPlex - Retina

Central 24-2 Threshold Test

Retinal Vein Occlusion

KEY POINTS

- Vision loss from RVO may be a consequence of macular ischemia and/or edema
- More extensive retinal ischemia increases the risk of neovascular complications
- OCTA is an excellent tool for evaluating retinal perfusion and detecting preretinal neovascularization following RVO

AMD & OTHER CAUSES OF CNV

OCTA Clinical Applications

- CNV detection, classification and quantification
- Assess responsiveness to treatment
- Assess need for retreatment
- Detect quiescent (inactive) CNV membranes

AMD

AMD - Drusen

Avascular Angio

Avascular Structural

AMD - Drusen Choriocapillaris Choroid

PMID: 32826223

Avascular

Choriocapillaris

Choroid

Seafan Pattern

Medusa Pattern

Vessels radiate from one side of the lesion

Vessels branch in all directions from the center of the lesion

PMID: 30932032

Clinical science

Evaluation of the clinical utility of optical coherence tomography angiography in age-related macular degeneration

Melina Cavichini,^{1,2} Kunny C Dans,¹ Mahima Jhingan,^{1,3} Manuel J Amador-Patarroyo,^{1,4} Shyamanga Borooah,^{5,6} Dirk-Uwe Bartsch,¹ Eric Nudleman,¹ William R Freeman ¹⁰

Sensitivity	80%	Correctly identify presence of CNV
Specificity	85%	Correctly identify absence of CNV
Positive Predictive Value	60%	CNV found after positive result
Negative Predictive Value	94%	CNV not found after negative result

PMID 32826223

THREE CLINICAL CNV VARIANTS

- 1. <u>Active lesions</u>: Symptomatic, signs of exudation on OCT (subretinal fluid)
- Inactive lesions: Status following successful anti-VEGF therapy. No signs of exudation on OCT
- 3. <u>Subclinical lesions</u>: Asymptomatic, no signs of exudation on OCT. Often found in fellow eyes of active CNV. High risk of becoming active

Presence of qualitative OCTA criteria

INACTIVE

ACTIVE

OCTA SIGNS OF ACTIVE CNV

Active lesions contain smaller caliber vessels

Active lesions have looping vessels at margins. Inactive lesions have a "dead tree" appearance

Active lesions are surrounded by a zone of decreased signal intensity ("halo sign")

PMID: 31665719

Subretinal lesion with fluid leakage

OCTA reveals seafan CNV with OCTA signs that it is active Left: Outer retina Right: Choroid

PMID: 30932032

AMD- Nonexudative (subclinical) CNV

- A. OCT shows PED w/o
 SRF in right eye of
 78yo asymptomatic
 man with dry AMD.
 VA 20/20
- B. OCTA B-scan shows flow signal within PED
- C. En-face OCTA reveals CNV within PED. Note projection artifact of retinal vascular tree
- D. Same image with projection artifact removed

PMID 26876696

These lesions are asymptomatic but carry a high risk of exudation. These lesions may remain stable for years but require close monitoring

AMD- Nonexudative (subclinical) CNV

Sensitivity: 88% Specificity: 87% PPV: 76% NPV: 94% "DOUBLE LAYER" SIGN TO IDENTIFY SUBCLINICAL CNV IN EYES WITH "DRY" AMD

Top layer = RPE Bottom layer = Bruch's

Absence of SRF, blood, and other signs of exudation indicates nonexudative nature of the lesion

PMID: 31014697

WHAT IS IT?

MacTel type 2 is an idiopathic bilateral neurodegenerative disease with characteristic alterations of the macular capillary network and neurosensory atrophy

CLINICAL FEATURES INCLUDE:

- Loss of macular pigment
- Retinal hyporeflective cavities on OCT
- Telangiectatic capillaries (early)
- Retinal pigment plaques, foveal atrophy, and subretinal neovascularization (late)

CASE REPORT

56yo HF

- Consultation for evaluation of maculopathy OU
- C/O bilateral progressive decrease in vision x 2 yrs
- MH: Good health. No meds
- POH: Unremarkable
- BCVA: 20/100 OD, 20/200 OS
- Ta 25/25 @ 2pm
- SLE: WNL OU

OD

OS

OD

AngioPlex - Retina

OS

AngioPlex - Retina

 \mathbf{O}

AngioPlex - Custom

OS

ingle Field Analysis									E	ye: Left	Single Field Ana	lysis												E	ye: Right
Name: ID:									D	08:10-12-1950	Name: ID:													D	08 10-12-1960
entral 30-2 Threshold Test										10	Central 30-2 Th	reshold	Test								_				
Ixation Monitor: OFF ixation Target: Central ixation Losses: 0/0 alse POS Errors: 4 %		Stimu Back Strat	ilus: I groun egy: S	ii, W d. 31 SITA	hite 1.5 ASI -Stand	8 Iard	Pupil Dia Visual A RX: D	ameter: kouity: 05 DC X	c	Date: 05-04-2017 Time 11:04 AM Age: 55	Fixation Monitor Fixation Target: Fixation Losses False POS Error	: Gaze/E Central : 10/23 : s: 5 %	Blind Sp xx	oot		Stimul Backg Strate	us: III round gy: Si	. Whit I 31.5 TA+S	e ASB tanda	rd	Pup Visi RX:	il Diamete ual Acuity DS	er: /: DC X		Date: 08-04-201 Time: 10.48 AM Age: 56
alse NEG Errors: 15 % est Duration: 12:48	22	23	20	14						· ·	False NEG Error Test Duration: 1	9:15% 3.97			20	15 1,	2 2	\$				20			
over OFF 20	26	24 -	22	21	19		.2			1000000	Foves: OFF			18	20	20 - 2	2 1	25				. All			and a state
15 22	25	25	21	24	2 2			1					21	25	28	25 2	1 2	22	17			20000		53.42 53.42	
2 25 24	×	2	21	25	× 2	10			000 0			2	e 22	27	22	2 2	e :		17	17	100	Contrari Contraria Contraria	1		Wit:
25 27 9	25		200 - 10 211 - 10	24	2 2			Ę.	338 M			2012	23	24	27	6 1	2 2		,10	14			3		
30 25 27 20	22	23	24	24	24 12	2 19		- 56	1442 de	× 550000 ×		30 7	C 17	21	z	24 2	5 2	1	15	17	8		di d	¢ ‡	s s B s s ^s
27 27 22	22	23	25	17	20 17	21		- 272				2	2 22	24	21	24 2	5 2	5 23	20	15	\$ 5.5			1000	
22 23	22	25	17	20	19 15	5	344						17	23	21	20 2	1 2	5 15	. 17					10000	
22	22	23 -	11	17	12		14 <u>1</u>							19	20	17 - 1	2	a 19				1200			3
	25	н		16			Terre			- 19 S		Ĩ.	10040		15	17 2	S 1	1			harry	632			6
-2 -1 -4 -10						3 (1 1 -5	~~~~~				-1 -6 -5	-3			+				0 -2	-1 1			+	
-8 -1 -2 -5 -6 -7					-1	1 1 2	0 1 2				-6		-12-5						-	-3 -3	-1 -3	-1	224		
-3 -5 -6 -6 -5 -7					12 11	-1 -1	-2 -1 0 -	2			-6 -4	-3 -7 -6	2 -6	-10					2 0	1 -2	-1 2	-2 -2		- Lov	V Test Heliability ***
-7 -2 -8 -5 -6 -6 -6 -7 -7	1			-1	2 1 -1	-2 -2	-1-1-1-	2 -2	CHT		-0 -7 -3	-2 -5 -2	· -2: -2	9-12-1				-2.	3 1	2 -1	-1 -23	-10 -7 -7	G	нπ	
-4 -2 -5 -30 -27 -8 -7 -7 -1	16			1	1 2	-4 -2	5 -22 -1 -2 -	5 =1t	Carteide	Normal Limite	-4 -0 -5	*5 *34 *2	S +9	-19 -1	15			0 .	2 -3	7 -30	-15 -5	-15 -10	. 0	utside	Normal Limits
-4 -2 -3 -10 -9 -9 -8 -18 -1	8			- 9	2	-1 -1	1-1-1-	13 -3	Quiside	s Normal Cirina	-7 -12 -10	-8 -9 -8	-7	-15-1	12			-2 -	8 -6		~ ~	-11 -3			
-2 -3 -3 -10 -6 -7 -15 -11 -12 -1	5			3	1 2 -4	-5 -4	-2 -10 -5 -	7 -1			-5 -7 -7	-7 -8 -7	-3 -7	-12-1	14			4.	3 -2	13 -4	-3 1	-3 -6 -10	e v	FL	732
-8 -7 -5 -5 -14 -11 -11 -12					-2 -2	-4 -4	-9 -8 -8 -	7	VEL	(4%	-10 -7	-9 -11-1	0-5-1	1 -12				- 3	6 -3	-5 -7	5-1	-7 -8			
-8 -8 -7 -15 -12 -16					-3		-10 -7 -11		MD	-9.15dB P<0.5%	-9	-9 -13 -1	1 -20 -1	4					-5	5 5	-7 -16	-15	M	D	-9.67 dB P < 0.5%
-9 -14 -11							-2 -2		PSD	6.22 dB P < 0.5%		-10 -10 -9	5 -15							-6 -6	~ -14		P	SD	7.22 dB P < 0.5%
Total Deviation						Patler	n Deviation					Total Dev	viation						P	attern	Deviat	ion			
· · · · ·						4.4	84 Q2						S							199	133				
					58	10.0	9 898				12	12 12 ::	10						204	ROFE	15	14			
0001 1 100					202	1.4	1. Long .	2			\$ž ::	· 🏂 🕄	· · 8	2					22	12	•	• •			
	8			103	100	200	Sa 200 1	1012			11 35 17	20 20		1	•			4109	1254	4.034	•	■ 12 ::			
											· 🏂 🔳	*						100	• ።	•	■ 35	1 34			
				-				<u>~</u>			tt. 🖬 🔳							100		:: 🐧	11. v	■ 波	12		
											- 35 🔳							194	• •	:: #2		· 12 🔳			
				36	1	82. 82					35 🔳		12					- 3	4	2.	3				
*								31			12										*				A REAL PROPERTY OF A REAL PROPER
3 5 5		2 < 5	72		20				BOWDE	IN EYE CARE		2 3 2					ę.			8.8	•		80	DWDE	IN EYE CARE
29 a a 42		12 < 2	14			2	1 K. 11									2. < 23	3				1				
041		8 <1	8													\$ < 19	£								
		1 in	162													<0.	5%								
		- 10																							
OUR PLAN:

(1) IVB OS, (2) Glaucoma eval, (3) Low vision

PATIENT'S PLAN:

- Return 8 mos later
- C/O vision getting worse OS.
- BCVA: 20/100 OU
- Ta 24/24 @ 4pm
- SLE: WNL OU

OD

OS

Registration : Automatic

Registration succeeded

Exam from 8/4/2017 1:02:18 PM

Fovea: 297, 75

Overlay: OCT Fundus

Transparency: 0 %

Exam from 4/13/2018 4:21:07 PM

Overlay: ILM-RPE Difference Transparency: 0 %

KEY POINTS

- No effective treatment for nonproliferative disease (macular atrophy)
- Treatment of subretinal neovascularization can prevent vision loss
- OCTA is well suited to visualizing the retinal vascular abnormalities associated with MacTel2, particularly with monitoring subretinal neovascularization

GLAUCOMA

OCTA Clinical Applications

- Screening/diagnosing
- Staging
- Monitoring progression
 - High myopia

GLAUCOMA

AMERICAN ACADEMY OF OPHTHALMOLOGY*

Ophthalmic Technology Assessment

OCT Angiography for the Diagnosis of Glaucoma

A Report by the American Academy of Ophthalmology

Darrell WuDunn, MD, PhD,¹ Hana L. Takusagawa, MD,² Arthur J. Sit, MD,³ Jullia A. Rosdahl, MD, PhD,⁴ Sunita Radhakrishnan, MD,⁵ Ambika Hoguet, MD,⁶ Ying Han, MD, PhD,⁷ Teresa C. Chen, MD⁸

Purpose: To review the current published literature on the use of OCT angiography (OCTA) to help detect changes associated with the diagnosis of primary open-angle glaucoma.

Methods: Searches of the peer-reviewed literature were conducted in March 2018, June 2018, April 2019, December 2019, and June 2020 in the PubMed and Cochrane Library databases. Abstracts of 459 articles were examined to exclude reviews and non-English articles. After inclusion and exclusion criteria were applied, 75 articles were selected and the panel methodologist rated them for strength of evidence. Three articles were rated level I and 57 articles were rated level II. The 15 level III articles were excluded.

Results: OCT angiography can detect decreased capillary vessel density within the peripapillary nerve fiber layer (level II) and macula (level I and II) in patients with suspected glaucoma, preperimetric glaucoma, and perimetric glaucoma. The degree of vessel density loss correlates significantly with glaucoma severity both overall and topographically (level II) as well as longitudinally (level I). For differentiating glaucomates from healthy

"Vessel density loss associated with glaucoma can be detected by OCTA."

PMID 33632585

Glaucoma

Superficial

Seminars in Ophthalmology, 2019; 34(4): 279–286 © Taylor & Francis ISSN: 0882-0538 print / 1744-5205 online DOI: https://doi.org/10.1080/08820538.2019.1620807

Check for updates

A Review of OCT Angiography in Glaucoma

Astrid C. Werner and Lucy Q. Sheno

Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, USA

ABSTRACT

There is growing evidence that vascular dysfunction plays a role in the pathogenesis of glaucoma. The details of this relationship have remained elusive partially due to limitations in our ability to assess blood flow in the optic nerve. Optical coherence tomography angiography (OCTA) has emerged as a promising new technology well positioned to become the first clinically suitable test of optic nerve perfusion. OCTA uses the motion of red

"There is early evidence that OCTA may be of particular use in very early or very late stage disease where our current functional or structural diagnostic modalities fall short, however, its superiority to existing technology has not been confirmed."

CONCLUSION

- Many advantages over IVFA
- Better detection of non-perfusion in diabetes and vein occlusion
- Earlier detection of pre-retinal neovascularization
- Improved visualization of CNV and precursors
- Potential for early glaucoma detection and end-stage management